Journal of Diabetology

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 8  |  Issue : 3  |  Page : 74--85

Validation of the antidiabetic effects of Vernonia amygdalina delile leaf fractions in fortified diet-fed streptozotocin-treated rat model of type-2 diabetes


Stanley Irobekhian Reuben Okoduwa1, Ismaila Alhaji Umar2, Dorcas Bolanle James2, Hajiya Mairo Inuwa2 
1 Department of Biochemistry, Ahmadu Bello University, Samaru-Zaria; Directorate of Research and Development, n Institute of Leather and Science Technology, Zaria, Nigeria
2 Department of Biochemistry, Ahmadu Bello University, Samaru-Zaria, Zaria, Nigeria

Correspondence Address:
Stanley Irobekhian Reuben Okoduwa
Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, PMB 1034, Zaria
Nigeria

Background: Vernonia amygdalina (VA) is used in the traditional management of diabetes in Nigeria. Previous scientific verification of VA is on Type-1 diabetes model, in spite of the continuous increase in Type-2 diabetes (T2D) among adults. This study aimed to validate the antidiabetic effects of VA leaf fraction (VALF) in a unique T2D rat model. Materials and Methods: Methanol crude extract of VA leaf was fractionated with solvents of increasing order of polarity (n-hexane, chloroform, ethyl-acetate, n- butanol and water). The antidiabetic activities of the fractions were evaluated in vivo in T2D model rats. Albino Wistar rats were induced with T2D and treated with the VALF. Several T2D-related parameters were measured. Results: T2D rats showed significant increase in serum levels of fasting blood glucose (FBG), liver and kidney biomarkers. At 28-day post-oral treatment with the VALF, FBG levels were significantly (P < 0.05) reduced (n- hexane [29.3%], chloroform [66.7%], ethyl acetate [36.2%], n- butanol [45.59%] and aqueous [39.3%]). The glucose tolerance ability was significantly improved in the chloroform fraction (Vernonia amygdalina chloroform fraction [VAc])-treated groups compared to the other fractions-treated group and diabetic control group. Furthermore, the VAc was found to be most effective as it ameliorates most of the alterations caused in the studied parameters in diabetic rats when compared with n- hexane, ethyl acetate, n- butanol and aqueous fractions. Conclusion: The study validates the anti-diabetic effects of VALF in fortified diet-fed streptozotocin-treated rat model of T2D, and suggests that the VAc is a potential candidate for development of a more effective drug for the management of T2D.


How to cite this article:
Reuben Okoduwa SI, Umar IA, James DB, Inuwa HM. Validation of the antidiabetic effects of Vernonia amygdalina delile leaf fractions in fortified diet-fed streptozotocin-treated rat model of type-2 diabetes.J Diabetol 2017;8:74-85


How to cite this URL:
Reuben Okoduwa SI, Umar IA, James DB, Inuwa HM. Validation of the antidiabetic effects of Vernonia amygdalina delile leaf fractions in fortified diet-fed streptozotocin-treated rat model of type-2 diabetes. J Diabetol [serial online] 2017 [cited 2019 Oct 14 ];8:74-85
Available from: http://www.journalofdiabetology.org/article.asp?issn=2078-7685;year=2017;volume=8;issue=3;spage=74;epage=85;aulast=Reuben;type=0